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Problem formulation and computation

Analytical properties of MDO problem formulations
have a direct and powerful inuence on the practical
solution of the resulting computational optimization
problem.

Di�culties may be introduced by attempts to achieve
desirable goals.



Outline

1. Two-discipline example: a canonical formulation

2. Some representative distributed formulations:

� Collaborative optimization (CO).
� Optimization by linear decomposition (OLD).

3. Analytical features of approaches based on
discrepancy functions:

� Breakdown of the KKT conditions.
� Non-smoothness of the constraints.

4. Possible remedies:

� Trilevel methods

5. Conjectures on bilevel approaches to MDO



Two discipline example: Fully integrated optimization

Disciplinary analysis 2
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minimize

s;l1;l2

f(s; a1; a2)

subject to g1(s; l1; a1) � 0

g2(s; l2; a2) � 0
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Simplifying assumption: no design constraints gi involve both a1 and a2.

Multidisciplinary analysis:
a1 = A1(s; l1; a2)

a2 = A2(s; l2; a1)



Motivation for distributed formulations

� Single-level formulations:

{ Fully integrated optimization: multidisciplinary
analysis + optimization.

{ Simultaneous analysis and design: multidisciplinary
analysis treated as equality constraints in
optimization.

{ Distributed analysis optimization: intermediate
to preceding (later talk).

� Features of single-level formulations:

{ Conventional nonlinear programming approaches|
no analytical or computational surprises.

{ Extensive disciplinary autonomy in implementation.

� May wish to dispense with MDA and maximize
disciplinary autonomy in execution.



Distributed bilevel formulations

Idea: Eliminate disciplinary design variables l1; l2 via disciplinary

optimization problems.

Representative approaches:

Optimization by linear decomposition (OLD):

� Maintain interdisciplinary consistency.

� Disciplinary level: minimize violation of the disciplinary design

constraints.

Sobieski (1982); Sobieski, James, and Dovi (1983); Barthelemy (1983); Sobieski, James, and Riley

(1987); Sobieski (1993); Balling and Sobieski (1994)



Collaborative optimization (CO):

� Satisfy disciplinary design constraints.

� Disciplinary level: minimize violation of interdisciplinary consistency.

Ramanathan and Schmit (1978); Schmit and Mehrinfar (1982); Schmit and Chang (1984); Thareja and

Haftka (1986);

Adelman, Walsh, and Pritchard (1992); Walsh, Young, Pritchard, Adelman, and Mantay (1995)

CO: Braun (1996); Braun and Kroo (1995); Braun, Moore, and Kroo (1997); I. Sobieski and Kroo

(1996); Manning (1999)



Mathematical structure of methods

using discrepancy functions

System-level problem:

minimize
(s;l1;l2)

f(s; t1; t2)

subject to c1(s; t1; t2) = 0
c2(s; t1; t2) = 0:

ci: discrepancy function associated with Discipline i.

ci is derived from the optimal solution of the
disciplinary optimization problem.



Example (CO):

minimize
s

f(s) = s

subject to 0 � s � 1:

Subsystem problems:

min
�1

1
2
k �1 � s k2

s.t. �1 � 0

min
�2

1
2
k �2 � s k2

s.t. �2 � 1:

Subsystem solutions:

��1(s) =

�
0 if s � 0
s if s � 0

��2(s) =

�
s if s � 1
1 if s � 1:



CO2 system-level problem:

minimize
s

s

subject to c1(s) =
1
2
k ��1(s)� s k2 = 0

c2(s) =
1
2
k ��2(s)� s k2 = 0;

CO1 system-level problem:

minimize
s

s

subject to c1(s) = ��1(s)� s = 0
c2(s) = ��2(s)� s = 0:



Example (CO):

minimize 1
2(a

2
1(l1; l2) + 10 a22(l1; l2))

subject to s+ l1 � 1
�s+ l2 � �2;

Subsystem problems:

minimize
�1;l1

1
2

h
k �1 � s k2 + k a1(�1; l1; t2)� t1 k

2
i

subject to �1 + l1 � 1;

where 2a1 + t2 = l1:

minimize
�2;l2

1
2

h
k �2 � s k

2
+ k a2(�2; l2; t1)� t2 k

2
i

subject to ��2 + l2 � �2;

where t1 + 2a2 = l2:



Subsystem solutions:

��1(s; t1; t2) = s+ 1=5 min((�s � 2t1 � t2 + 1); 0)

�l1(s; t1; t2) = 2t1 + t2 + 4=5 min((�s� 2t1 � t2 + 1); 0)

��2(s; t1; t2) = s+ 1=5 max((�s + t1 + 2t2 + 2); 0)

�l2(s; t1; t2) = t1 + 2t2 � 4=5 max((�s + t1 + 2t2 + 2); 0):



Scalar discrepancy functions: singularity

and breakdown of KKT conditions

For a scalar discrepancy function ci � 0, we necessarily
have rci(s; t1; t2) = 0 at all feasible points.

) Nonexistence of Lagrange multipliers is unavoidable.

) Trouble for conventional optimization algorithms.

Illustration (CO2):

minimize
s

s

subject to c1(s) =
1
2 k ��1(s)� s k

2
= 0

c2(s) =
1
2
k ��2(s)� s k2 = 0;

rc1(s) =

�
s if s � 0
0 if s � 0

; rc2(s) =

�
0 if s � 1
s� 1 if s � 1:

Violation of KKT condition (multiplier rule) at s = 0:

rf(s) + �1rc1(s) + �2rc2(s) = 1 6= 0:



E�ect of singular constraints

NPSOL applied to CO2 reformulation of one-variable LP:

Iteration s Penalty Cumulative

work

0 1.000e-03 0.0e+00 1

1 -9.990e-01 4.2e+00 2

2 -9.847e-01 5.7e+00 4

3 -8.282e-01 7.4e+00 6

4 -4.142e-01 2.7e+01 7

5 -3.430e-01 5.9e+01 9

6 -1.718e-01 4.0e+02 10

7 -1.436e-01 8.2e+02 12

8 -7.251e-02 5.4e+03 13

9 -6.076e-02 1.1e+04 15

10 -3.203e-02 6.5e+04 16

11 -2.717e-02 1.2e+05 18

12 -1.727e-02 5.1e+05 19

13 -1.442e-02 1.9e+06 20

14 -1.414e-02 4.7e+06 21

For QP example, convergence to non-solution can occur.



Vector-valued discrepancy functions

For a vector-valued discrepancy function ci of the
type that arises in CO1, the system-level constraint
derivatives are necessarily discontinuous on multiple
surfaces of design variables, including the solution.

) Nonsmoothness at solutions is unavoidable.

Vector-valued discrepancy functions also su�er from
singular Jacobians.

) Trouble for conventional (smooth) optimization
algorithms.

Illustration (CO1):

rc1(s) =

�
�1 if s � 0
0 if s � 0

; rc2(s) =

�
0 if s � 1
1 if s � 1:

The constraints are discontinuous at s = 0.



Generic properties of approaches based

on discrepancy functions: recapitulation

� Scalar discrepancy functions:

{ Singularity of system-level constraints at feasible
points.

{ Nonexistence of Lagrange multipliers.

� Vector discrepancy functions:

{ Nonsmoothness of system-level constraints at
solutions.

{ Singularity of system-level constraints at feasible
points.

System-level constraints are more nonlinear than those
in a single-level approach.

) Trouble for conventional (smooth) optimization
algorithms.

In general, there is an increase in the computational
e�ort (compared to a single-level approach).



Possible remedies

1. Single-level formulations.

? 2. Relaxation or approximation of system-level constraints.

? 3. Approximation of disciplinary problems.

? 4. Trilevel approaches.

5. Nonsmooth optimization algorithms

6. Ignore the problem(s).



Relaxation of system-level constraints

Treat the system-level scalar discrepancy constraints
as inequalities: ci � ", for " suitably close to 0.

Challenge: Choose " su�ciently small that the solution
of the relaxed problem is close to the solution of the
real problem, but not so close that the computational
di�culties re-emerge (see paper).

The tolerance " involves the MDA, not just direct
design variable mismatch.

Related penalty function approach:

minimize f + w(c1 + c2):

Alternatively: response surface (e.g., polynomial,
spline) approximations of system-level constraints.



System-level problem with KS

approximation

System-level problem:

minimize
(s;l1;l2)

f(s; t1; t2)

subject to KS1(s; t1; t2; �) � "
KS2(s; t1; t2; �) � ":

KSi: optimal value of unconstrained disciplinary
problem with Kreisselmeier{Steinhauser cumulative
objective.

Constraints are (in general) smooth and non-singular.

Moreover, approximation is conservative|disciplinary
design are satis�ed by disciplinary design variables.

Sobieski (1993), Balling and Sobieski (1994)



Trilevel approaches

Trilevel OLD/CO approach: Solve a sequence of \nice"
bilevel problems that are increasingly like the exact
non-smooth OLD/CO problem.

Two simple schemes:

1. Treat the system-level scalar discrepancy constraints
as inequalities: ci � ". Solve a sequence of bilevel
problems, letting "! 0.

Treat the scalar discrepancy constraints as penalty
terms, and let the penalty weight !1.

2. Solve a sequence of bilevel problems using the
KS approximation to the disciplinary optimization
problem, and let �!1.

Alternative scheme: DeMiguel and Murray (later talk).

In all cases, the outermost sequence of problems
becomes increasingly badly behaved.



Trilevel primal-dual algorithms

Penalty term in augmented Lagrangian couples
disciplinary calculations.

Proposed trilevel solutions:

� Stephanopoulos and Westerberg (1975): Separable
approximation of penalty term.

� Watanabe, Nishimura, and Matsubara (1978): Non-
separable penalty terms computed as solution of (yet
another) optimization problem.

� Bertsekas (1979): Minimization of Yosida{Moreau
regularization of the single-level problem.

� De Luca and Di Pillo (1987): Exact penalty
function with trilevel computation of primal and
dual variables.

All appear to su�er a loss of computational e�ciency.



Lessons learned

Problem formulation has practical consequences for
computation.

Analytical and computational di�culties may be
introduced by the choice of MDO reformulation.

Approaches based on discrepancy functions illustrate
this observation.



Some conjectures

Conjecture: There is no approach to MDO problem formulation that is

Bilevel and e�cient and robust and highly autonomous in execution

(parallel across disciplines) and exact.

Corollary: We seem to be forced to single-level or trilevel schemes.

Conjecture: Parallel autonomy of execution may be generally at odds with

overall e�ciency.

Conjecture: At least when MDO = nonlinear programming, autonomy of

implementation is at least as important as autonomy of execution.


